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Abstract

This paper presents a theory for quantum light propagation in a single-mode fiber which

includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The

theory reproduces the results of classical self-phase modulation, quantum four-wave mixing,

and classical soliton physics, within their respective regions of validity. It demonstrates the

crucial role played by the Kerr-effect material time constant, in limiting the quantum phase

shifts caused by the broadband zero-point fluctuations that accompany any quantized input

field. Operator moment equations--approximated, numerically, via a terminated cumulant

expansion--are used to obtain results for homodyne-measurement noise spectra when dis-

persion is negligible. More complicated forms of these equations can be used to incorporate

dispersion into the noise calculations.

1 Introduction

Optical fibers have long been considered for the generation of squeezed-state light, starting with the

pioneering work of Levenson and coworkers in the mid 1980's, who observed 0.58 dB of continuous-

wave (cw) squeezing [1], to recent measurements exhibiting over 5 dB of short-pulse squeezing [2].

In this paper we present a theory for quantum light propagation in single-mode optical fiber. Our

development, which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and

linear loss, is guided by two overarching principles: the theory must include all relevant prior re-

sults, both classical and quantum mechanical, and, within reasonable limits, it must accommodate

arbitrary input states. This theory [3] is an extension of our prior work on quantum propagation

in a dispersionless, lossless, Kerr medium [4]. In that earlier study it was shown that a material

time constant is crucial to a correct description of quantum nonlinear phase shifts beyond the

four-wave mixing regime, a conclusion similar to that reached by Blow and coworkers [5]. The use

of a finite Kerr-effect time constant is retained in the current treatment of lossy, dispersive fiber.

This paper is organized as follows. In Section 2 we review quantum propagation in a Kerr

medium, concentrating on the structure of the theory and the necessity of a finite Kerr-effect time

constant. We recount the principal result of [4], namely the limits on squeezed-state generation
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in lossless, dispersionless fiber. Section 3 expands this theory to incorporate dispersion and linear

loss via a split-step approach. Section 4 introduces the terminated cumulant expansion (TCE)

as a technique for closing the infinite chain of coupled moment equations generated by the full

theory. Using the TCE, the limits on quadrature-noise squeezing in lossy, dispersionless fiber

are quantified. Finally, in Section 5, we discuss the relationship of our approach to other quan-

tum propagation theories for single-mode fiber, focusing on the necessity of the Kerr-effect time

constant.

2 Quantum Self-Phase Modulation

Our attention, in this section, is restricted to a linearly polarized field propagating in a lossless,

dispersionless, single-mode fiber that exhibits the Kerr nonlinearity. Classically, the refractive

index in this fiber can be written as follows,

n(z,t) = no + _J_--IE(z,t)l 2, (I)

where z is the axial coordinate along the fiber, t is time, no is the linear refractive index, n2 is the

Kerr coefficient_, A is the fiber's effective cross-sectional core area, and E(z, t) is the normalized

complex envelope of the single-mode field within the fiber. The field normalization we employ is

such that E(z, t) has units _/photons/sec. Note that the introduction of the photon energy, fizz,

is strictly a convenience at this classical stage; it has no quantum significance as yet.

Input Plane Output Plane
(z=O) (z=L)

Z

L

EIN(t) EOUT[t)

Fig. 1. Schematic configuration for Kerr-effect

propagation in lossless, dispersionless fiber.

The classical propagation problem in lossless, dispersionless, Kerr-effect fiber is sketched in

Fig. 1. The fiber is excited, at z -- 0, by an input field EIg(t) that launches a +z-going wave

E(z, t) satisfying E(O, t) -- EIN(t). In a reference frame moving at the group velocity, vg, the

complex field envelope within the fiber satisfies the following differential equation [6],

OE(z,t') _ inE*(z,t')E(z,t')E(z,t'), for z > 0,
Oz

(2)

where t' - t - z/vg is the retarded time,

2rn2ru_

- A_ ' (3)
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is the nonlinear phase shift per unit length per unit photon flux, and A = 2_rc/w is the center

wavelength of the light. The intensity is a constant of motion for Eq. 2, so it is easily shown that

E(z,t) =exp[i_zE*(O,t')E(O,t')]E(O,t'), for z > 0. (4)

Using the initial excitation condition that specifies E(0, t'), and directing our attention to EOUT (t) =

E(L, t), the field coupled out of the fiber at z = L, we obtain the classical input-output relation

for a length L lossless, dispersionless fiber exhibiting the Kerr nonlinearity, namely,

EOUT(t) = exp[irE[N(t)Em(t)] EIN(t), (5)

where

r - _L, (6)

is the nonlinear phase shift per unit photon flux and, for convenience, we have dropped the L/vg
group delay.

Two well known results follow directly from Eq. 5: spectral broadening through self-phase

modulation (SPM), and four-wave mixing (FWM). As an immediate consequence of Eq. 5, we

see that an optical pulse propagating through the fiber acquires a time-varying phase shift, which

is proportional to the pulse's intensity. The derivative of this time-varying phase constitutes an

intensity-dependent instantaneous-frequency variation, implying, for sufficiently intense pulses or

long i_bers, significant spectral broadening. On the other hand, when the input field comprises a

strong monochromatic pump, EPN, at frequency w plus weak sidebands at frequencies w+_, FWM

couples the sidebands. The input-output relation for classical FWM can be obtained, from Eq. 5,

by replacing the exponential term with its two-term Taylor series approximation, and assuming

that all nonlinear phase shifts other than the pump×pump term are small:

F,OUT(t) : exp(irIEPNI 2) [(1 + ir]EPNI2)FqN(t) + ir(EPN)2F,_N(t)] , (7)

where E(t) --- E(t) - E P for the input and output fields.

In the quantum theory of the Kerr interaction the photon-units complex field envelope, E(z, t),

becomes a photon-units field operator, /_(z, t). The input field operator--/_m(t) -/_(0, t)--is a

single.spatial mode, multitemporal-mode free field, and hence must satisfy the following 5-function

commutator rule [7],

=6(t- u), (8)

for photon-units field operators. The output field operator--EouT(t) =-- E(L, t)--is also a single-

mode free field, whose commutator must therefore mimic Eq. 8. This requirement is automatically

met by quantizing Eq. 2 as follows,

0 ( __J_,z,t'j_ i_t(z,t,)_(z,t,)_(z,t,) ' for z > 0. (9)
Oz

Quantum FWM emerges from Eq. 9, in a manner that ensures commutator preservation, by

decomposing the input field operator, F,m(t), into a c-number pump, EPN, plus a 5-function

commutator field operator, EIg(t). Then, assuming that all nonlinear phase shifts other than the

453



pumpx pump term aresmall, Eq. 9 canbe linearizedand solvedto yield the quantum versionof
Eq. 7, namely,

EOUT(t) = exp(irlEPgl 2) [(1 + irlEPNI2)Eig(t)+ ir(EPN)2Etiy(t)].
(10)

Equation 10 is commutator preserving, does not require a Kerr-effect time constant, is consis-

tent with the classical FWM theory, and agrees with experimental results in fiber squeezed-state

generation [1].

We find that it is not possible to treat quantum SPM from Eq. 9, in a way that recovers the

classical limit, without a modification of the theory. To highlight the failing of instantaneous-

interaction quantum SPM, let us calculate the mean output-field for a coherent-state input field

[4]. By direct substitution,

k(z,t) = exp[i.zk'(O,t')k(O,t')] k(O,t'), for z > 0, (11)

can be shown to be the solution to Eq. 9, leading to

F,OUT(t) = exp[irF._N(t)Em(t)] F.,N(t), (12)

as the quantum version of Eq. 5 under an instantaneous Kerr-interaction model. The output mean

field,

-EouT(t) ---- (Em(t)tEouT(t)lEm(t))

= (E,N(t)lexp[ir[_N(t)F.m(t)] Em(t)lEm(t)). (13)

for a coherent-state input field reduces to

-EouT(t) = (Em(t)lexp[irEtm(t)fi-m(t)] [Em(t))Em(t),

because a coherent-state input field obeys the eigenfunction relation

(14)

F,,N(t)IEIN(t)) : Em(t)lEm(t)), for all t. (15)

For the rest of the calculation we employ a limiting argument,

t) = lira 0 ((EIN(t),exp[(ir/T)ft:TdT E_N(T)EIN(T)] [EIN(t)})EIN(t)

= l_m (exp [(exp(ir/T)-1)ft:TdTIEIN(T)[2])EIN(t)

= EIN(t),

(16)

(17)

(18)

where we have exploited the characteristic function for coherent-state photon counting [8] to obtain

Eq. 17.

Equation 18 predicts that the instantaneous Kerr nonlinearity has no effect whatsoever on the

mean field of a coherent-state input, regardless of how large the classical, peak nonlinear phase shift

becomes! This result contradicts the classical theory, Eq. 5, and, more importantly, it contradicts
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experimentswhich have confirmed the classicalspectral-broadeningpredictions. In retrospect,
the failure of Eq. 9 to reproduceSPM in the appropriate limit shouldnot be too surprising as it
arisesfrom applying an instantaneous,spectral-broadeningnonlinearity to a quantizedfield whose
vacuum-statefluctuations extend to infinite bandwidth.

The classicalSPM result can be recoveredfrom our quantum mean-fieldcalculation by intro-
ducing a phenomenologicalKerr-effect time constant, TK, as a lower-bound for T in Eq. 16. In

particular, with T = T K > 0 and r/T g _ 1, Eq. 17 becomes

--EouT(t) _ exp [(ir/'rK) /tt_rKdTIEIN(T)I 2] EIN(t)

exp[irlE, g(t)l 2] E,N(t), (19)

whenever Tg is smaller than any classical time scale present in the field.

To incorporate Tg into our quantum propagation theory for the lossless, dispersionless, Kerr

effect in single-mode fiber, we employ the following partial mode expansion for the input-field

operator:
OO

= ]E J.N ( t - n K), (20)
rl,----- --OO

where ( ^IN CO } is aa n : --oo < n < set annihilation operators, and

1
0,

for 0< t < TK,

otherwise,

(21)

is a c-number, TK-second duration, rectangular pulse. Suppressing the L/vg-second group delay,

the same expansion applies to the output field operator, fi-OVT(t), with the input annihilation

operators replaced by the output annihilation operators, { __OUTu,_ " --co < n < co }. These output

annihilation operators axe related to their corresponding inputs by

_OUT exp[(ir/Tg)5_Nt_t_N] ^IN for -co < n < co, (22)n = an ,

which should be compared with the instantaneous quantum Kerr model, Eq. 12.

Equations 20-22 comprise a coarse-grained time model for quantum Kerr-effect propagation

in lossless, dispersionless, single-mode fiber. Introducing the Kerr time-constant as a simple phe-

nomenological parameter, TK, is arguably a distasteful ad hoc procedure, but the known existence

of finite Kerr response times plus the inconsistency of an instantaneous quantum Kerr model mit-

igate against this deficiency. A more important consideration with respect to Eqs. 20-22 is that

they are fundamentally incomplete; { _(t - nTK) : -co < n < co } is an orthonormal temporal

mode set, but not a complete orthonormal mode set. Hence, in the coarse-grained time model,

the input field commutator obeys

/t_-_, if (n - 1)7K <_ t, U < nTK, for n an integer,

(23)
0, otherwise.
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This expression is not the 5-function commutator that a photon-units field operator should possess.

However, as will be made clear below, it can be a reasonable approximation thereto. Moreover,

from Eqs. 22 and 23, we see that the coarse-grained time quantum theory is consistent in that it

preserves 5r_-function commutators--we have that

[JEOUT(t), EtOUT(U)] = 5rK(t, U). (24)

Given the approximate nature of the coarse-grained model's field commutator [4], what con-

ditions suffice to ensure the accuracy of this model's moment predictions? Clearly, this model is

a poor approximation for field dynamics occurring on time scales comparable to TK, or, equiv-

alently, over bandwidths of the order of TK 1. We expect TK to fall in the interval 1-100 fs--to

match the known time scales of n2--so our quantum input field, E,1N(t), must not have excited

(non-vacuum state) modes at these time or bandwidth scales. Furthermore, because SPM causes

spectral broadening, we must check that this same time/bandwidth scale condition is satisfied

by the output field operator, E,OUT(t). Finally, we must limit any photodetection measurements

that we make on the output field to be insensitive to E,ouT( t )-behavior at TK time scales or TK 1

bandwidths. When all three of these conditions apply, we believe the coarse-grained time quan-

tum Kerr model--with a proper value for TK--should capture the full behavior of quantum Kerr

propagation in lossless, dispersionless, single-mode fiber.

The output mean-field derivation--with a Kerr time-constant TK--is virtually identical to the

analysis of the instantaneous-interaction case. We find that

-EouT(t) -- (E,N(t)[EouT(t)[EIN(t)) = exp[iR[E,N(t)l 2] E,N(t), (25)

where we have defined the complex number, R, according to

iR - [exp(iCq) - 1]_'K, for Cq -- r/rK. (26)

Equation 25 bears a striking similarity to the classical formula, Eq. 5. Indeed, the two would be

identical were R = r to prevail.

We know that r is the classical nonlinear phase shift per unit photon flux. Because TK is the

time duration of a single, rectangular-pulse mode in our coarse-grained time model, we have that

Cq is numerically the classical phase shift produced by one photon in such a mode. Equation 25

applies to a coherent-state input field--which has vacuum-fluctuation noise in all its modes--so

it is fair to regard Cq, physically, as the quantum nonlinear phase shift that is due to the vacuum

fluctuations of a single mode.

The predictions of the quantum and classical theories are nearly coincident when we have

r ._ Re(R) and IIm(R)l << 1. These conditions hold for Cq << 1, as can be seen from Fig. 2,

where we have plotted Re(R)/r and Im(R)/r vs. Cq. Assuming TK = lfs, a lkm fused silica

fiber will have Cq _ 10 -3 rad; from Fig. 2 we conclude that Eq. 25, the quantum coherent-state

mean field, will then be in excellent agreement with Eq. 5, the classical mean field result. For

Cq > 10 -1 rad, there is a pronounced divergence between Re(R) and r, caused by the intrinsic

periodicity of R. Viewed as a function of Cq, Eq. 26 shows that R is periodic with period 27r.

Physically, this periodicity constitutes a quantum state-recurrence for Kerr-effect propagation in

lossless, dispersionless fiber and occurs when L = Lq ---- 27rTK/g; for T K = 1 fs and fused-silica
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fiber this implies Lq _ 104 km, an experimentally inaccessible value for our assumptions of zero

loss and zero dispersion.
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Fig. 2. Logarithmic plots of Re(R ) / rand Im(R ) / r
vs. q. The coherent-state mean field of coarse-
grained time SPM reduces to the classical SPM
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Fig. 3. Minimum and maximum low-frequency,
homodyne-measurement noise spectra for a cw,

coherent-state input vs. fiber length. The solid
curves are the coarse-grained time SPM the-
ory; the dashed curves are the instantaneous-
interaction FWM theory. The parameter values
employed are: = 1.06_m; A =356 x 10- 11m2;

n2 = 32 x 10-2°m2/W; VzN = l W; and K =
lfs.

Expressions for the quantum output moments, up to the second order, have been derived for

Gaussian-state inputs [4]. We note that these moments yield the correct results in the appro-

priate limits. Specifically, when Cq << 1 they are in agreement with the quantum FWM results.

Furthermore, if we let R ----+ r and 5r_ (t, u) _ 0 and use classical covariances in lieu of quan-

tum covariances throughout, e.g., (J_IN(t)EIN(U)> _ E_N(t)EIN(U), etc., the resulting equations

agree with classical stochastic SPM results. We note that none of these classical formulas depend

on the Kerr-effect time constant, TK. This is fully consistent with our assumption that the spec-

trum of the classical input excitation and the implied output-field spectrum are both narrower

than TK 1. Under these circumstances we expect--in a classical theory--that the Kerr interaction

is effectively instantaneous.

The implications of the full theory are readily ascertained by examining the output field's

homodyne-detection statistics. An ideal homodyne measurement on EouT(t) yields a photocurrent

whose statistics are proportional to those of the following abstract quantum measurement:

E (t) - + (27)

where ¢ is the local-oscillator (LO) phase. As is conventionally done in cw squeezing experiments,

we shall focus on the minimum and maximum values of the homodyne-noise spectra as the LO

phase is varied.
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For a coherent-state input, both the instantaneous-interaction FWM and the coarse-grained

time SPM theories imply frequency-independent homodyne spectra out to frequencies comparable

to 7K 1. In Fig. 3 we have plotted Stain(O) and Smax(O), vs. fiber length L, for both theories. These

curves assume n2 = 3.2 × 10-2°m2/W, A = 3.56 × 10 -11 m 2, A = 1.06#m, PIN =- _IEINI 2 =

1 W, and, for the coarse-grained time case, TK = 1 fs. Quantum FWM predicts complete noise

suppression for one quadrature component, Stain(0) _ 0, as the fiber length becomes infinite.

Moreover, this transpires at minimum uncertainty product, Sm,n(0)Sm_(0) = 1. These FWM

features are clearly evident is Fig. 3; for long enough fibers, however, they are at odds with our

coarse-grained time SPM theory. According to Fig. 3, the coarse-grained time SPM theory has

an Stain(0) which reaches a nonzero minimum at L _ 500m, and increases, for longer fibers,

substantially above the coherent-state value of unity.

The precise location of the minimum in the low noise quadrature depends on Tg with higher

values of Tg extending the region of agreement between the instantaneous interaction FWM and

the coarse-grained time SPM theories. For various technical reasons, e.g., guided acoustic-wave

Brillouin scatter, it is not feasible to perform such an experiment using a cw field. Nevertheless,

the physical conditions corresponding to the minimum in Fig. 3, namely 1 Watt input power and

roughly a 500-meter-long fiber, seem well within the realm of possibility for pulsed experiments.

In fact, modeling Shelby's soliton-squeezing experiments [9] by using his peak intensity as the

intensity in our cw theory, we find that conditions are right for a rg-dependent deviation from

quantum FWM. However, accurate analysis of a short-pulse experiment--especially one based

on solitons--must surely account for group-velocity dispersion. In addition, a realistic quantum

propagation theory for long fibers should address linear loss.

3 Inclusion of Dispersion and Loss

A split-step configuration for incorporating group-velocity dispersion (GVD) and linear loss (LL)

into quantum propagation analysis for a Kerr-nonlinear fiber is shown schematically in Fig. 4. An

infinitesimal length of fiber at z is divided into two sub-segments. The first sub-segment exhibits

only the Kerr nonlinearity and linear loss; the second has neither Kerr effect nor loss, but suffers

from dispersion.

Let E(z, t) be the coarse-grained time, +z-going, photon-units field operator within the fiber,

i.e., as before we have the mode expansion

OO

F,(z,t) = _ &_(z)_(t- nTg). (28)
n_--o0

Over an infinitesimal, 5z-meter-long fiber segment, the split-step procedure leads to the z-to-

(z + 6z) annihilation operator transformation,

OO

_,(z + 6z) = _ h[n - m; 6z]am(z), for -co<n<co, (29)

where

an(z) - exp[i(gSZ/TK)&_(Z)5_(Z) + (C_/2)6Z] an(z) + v/-_tfzbn(z), for -co < n < co, (30)
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characterizes SPM and LL alone over the dispersionless sub-segment, and

- 6z, for n = -1, 1,

h[n; $z] - (31)1 + __-_fiz, for n = 0,
Tk

O, otherwise,

is a discrete-time impulse response accounting for the dispersive sub-segment. In Eqs. 28-31, we

have suppressed the group-velocity delay, and we have introduced the fiber's dispersion coefficient,

_2, and its power-attenuation coefficient, a. More importantly, with the inclusion of a Langevin

noise-operator /_n(z) required by the presence of the LL these equations preserve the fi_K(t,u)-

function commutator of a coarse-grained time input field operator, IEIN(t). So, if we drive the fiber

at z = 0 with such an input--forcing/_(0, t) = Eig(t)--arld then iteratively apply Eqs. 28-31, we

will arrive at an output field operator, EOUT(t) = E(L, t) at z = L with a proper coarse-grained

time commutator. Furthermore, because the unitary operators that transform the {&n(z)} into

the {an(Z)} are known, as are the operators for changing the {an(z)} into the {Sn(z + _z)}, we

can--in principle---calculate all the measurement statistics for EOuT(t), given any state of EiN(t).

Input Plane Output Plane
(z=O) z (z=L)

z

K = KerrNonlinearity / i.. Y.__: _
L = Linear Loss I !I_,L&U! I
D = Group VelocityDispersion \[ i / --

Fig. 4. Schematic split-step configuration for in-

clusion of group-velocity dispersion and linear loss

into the coarse-grained time SPM theory.

We note that the only aspect missed in this split-step approach is a term proportional to the

commutator of the Hamiltonians governing each step. It can be shown that this commutator is

finite and its contribution goes to zero in _z2; hence, in the limit of 6z _ 0 this is an exact

theory. Taking the limit of 6z ----* 0, the differential equation for the mode operator is

_z [2&n (z)(z)- &n+x(Z)]
iD2

&n(Z) = --(a/2)an(Z) + @/_K)a_(Z)a_(Z)+ _ --^a,_l

+ V/-d/_,(z), for0_<z<L,-cc<n<c¢. (32)

The coarse-grained time cannot be suppressed--it is essential to preventing the mean-field contra-

diction exhibited in Sect. 3.1--but it can be hidden. Returning to field operator notation, Eq. 32
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can be recast as

02 ^
_zE(z,t) = i,_jEt(z,t)JE(z,t)JE(z,t) - i_ _---Z_ E(z,t) - _JE(z,t) + v/-_F(z,t) (33)or t

with the obvious, implied definitions for the TK-approximation to the second partial derivative

with respect to time and for the Langevin noise field-operator.

Equation 33 is extraordinarily appealing. Converting it, naively, to continuous-time classical

form by merely dispensing with the operator carets, dropping the Langevin noise source, and the

TK subscripts, we obtain

O E(z, t) = i,_E*(z, t)E(z, t)E(z, t) - -_ E(z, t), (34)

02

_-_-_E(z,t) - _

the well-known starting point for the classical theory of solitons in fiber [6].

4 Moment Propagation and the Terminated Cumulant

Expansion

Although it is possible to calculate the exact state transformation for the preceding quantum

theory, it is a daunting numerical task in almost all cases of interest. Thus, we have elected to

follow a much simpler and restrictive course--moment propagation. Taking the expectation value

of Eq. 33 we find that the mean field develops according to

(jE(z,t)) = it_(j_t(z,t)j_(z,t)j_(z,t)) - i_; or_t2(JE(z,t)) - -_(E(z,t)} , (35)

which illustrates the fundamental problem of moment propagation--the Kerr nonlinearity couples

each moment's differential equation to those of higher order. For example, in the single time case,

the differential equation for the moment (JErk(t, z)JE t (t, z)} includes terms containing the moment

(/_tk+l(t, z)E: _+1 (t, z)), leading to an infinite progression of coupled differential equations.

This infinite linkage of moment equations can be broken, in an approximate way, through

a terminated cumulant expansion (TCE). (A brief review of cumulants--for classical random

variables--is found in the Appendix. Here, we rely on normally-ordered quantum cumulants.) In

the TCE-K expansion, all normally-ordered quantum-field cumulants beyond the K-th order are

set to zero:

((1-I[JEt(z,t)]mkl-I[E(z,t)]nk)) =0, when _-]_(mk +nk)> K. (36)
k k k

The TCE-K assumption provides low-order moment expressions for all field-operator moments

beyond K-th order. For example, the third-order cumulant relation,

((jE_(z,t)E2(z,t))} = (Et(z,t)F,2(z,t)) - 2(jEt(z,t)j_(z,t))(JE(z,t))

- (Ffl(z,t)><E2(z,t)>+ 2([_t(z,t)>(JE(z,t)>2, (37)

affordsthe followingexplicitexpression for the TCE-2 expansion:

(jEt(z,t)jE2(z,t)> = <j_t(z,t)><E2(z,t)>+2(JE'(z,t)E(z,t)>(E(z,t)>-2<J_'(z,t)><Et(z,t)> 2. (38)
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Substitution of this expression into the mean-field equation, Eq. 35, eliminates the third-order

moment and leads, ultimately, to a closed system of differential equations for

{ </_(z, t)>, (_t (z, t)E(z, u)), </)(z, t)E(z, u)) }. (39)

The accuracy of the TCE approximation depends upon both the initial state and its subsequent

propagation. For a Gaussian state, such as a coherent state, all cumulants of order three or higher

vanish. Moreover, a Gaussian state remains Gaussian under linear propagation--even if it is lossy

and/or dispersive---so, for example, TCE-2 is exact for Gaussian-state inputs in the four-wave

mixing limit. Higher-order TCE approximations track deviations from a Gaussian state, hence

they should prove useful for Gaussian-state inputs even beyond the four-wave mixing regime. This

is demonstrated, quantitatively, in Fig. 5, where we compare coherent-state input, homodyne-

noise output spectra for a lossless, dispersionless Kerr-effect fiber computed via TCE-K, with

the exact solution presented in the previous section. The coarse-grained time SPM curve (exact

solution) represents a state that is very nearly Gaussian state up to the point of its minimum-noise

curve departs from the instantaneous-interaction FWM curve. (As noted above, coherent-state

FWM is always a Gaussian-state case.) The TCE-2 approximation misses the mark, as it always

represents a minimum-uncertainty Gaussian state, which is plainly a bad approximation to the

exact solution. However, the TCE-3 approximation captures the essential nature of the exact

solution, viz. it correctly predicts the minimum noise level and its subsequent rise to the shot-

noise.level. As expected, the TCE-4 and TCE-5 approximations show slightly better performance,

but the meager improvement they provide hardly justifies their added computational burden.
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Armed with the TCE approximation, we can obtain homodyne-noise spectra for situations in

which the exact calculations are thwarted by moment linkage. Consider propagation in a lossy,
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dispersionless Kerr-effect fiber. In Fig. 6 we have plotted the exact SPM result for the lossless

case (solid curve) and the TCE solutions (dashed curves) for a fiber with a power loss coefficient

of 0.2 dB/km. The regions of overlap follow the same trends seen in Fig. 4, and predict a 4 dB

increase in the noise level over the lossless case.

Inclusion of dispersion couples time slots and greatly increases the complexity of TCE moment

calculations, even with a coherent-state input. If we address N time samples of the field, there

axe (19N + 15N 2 + 2N3)/3 complex moments, or (35N + 30N 2 + 4N3)/3 real quantities, to track.

Each real quantity obeys one of 23 types of differential equation, which contain anywhere from

5 to 87 terms. For N = 100, there are thus 717,300 moments, or 1,434,500 real quantities, to

be computed. We are working on these calculations at present, and expect to be reporting our

results in the near future.

5 Conclusions

We have presented a general theory for quantum propagation of an optical field in a lossy, dispersive

Kerr-effect fiber. Our approach leads to equations that are continuous in space, but discrete in

time. The time granularity is set by a phenomenological Kerr-effect time constant needed to

properly recover the known results of classical self-phase modulation. Other theories have been

developed that describe propagation in such a fiber [11],[16], but ours is the first for which a

material time constant has been specifically employed to temper the instantaneous interaction.

It has been argued that the presence of dispersion provides a much more constrictive bandwidth

limitation than TK 1, thereby eliminating the need for this Kerr-effect time constant [17]. We

disagree, but in the interests of brevity, we shall confine our remarks to a few brief points. First,

it has been shown that there is a four-wave mixing region in which dispersion enhances squeezing

[18]; here we may expect that dispersion exacerbates the need for a finite TK to correctly determine

the validity limit of FWM. On the other hand, if there are propagation regimes--such as soliton

propagation--wherein dispersion renders a finite Kerr-effect time constant unnecessary, then that

impotence should appear in our calculations, i.e., our noise results should be insensitive to the value

we assign to rK. Note that, even with loss and dispersion, the value of 7K is irrelevant to linearized

noise analysis, and this includes the linearized noise theory of quantum solitons. Finally, the

theory we have presented handles the case of an arbitrary field, in either the normal or anomalous

dispersion regimes, and is more encompassing than those restricted to soliton propagation.

Appendix

For a real-valued classical random vector ._ - (X1, X2,..., Xn) whose joint characteristic function

is ¢(_ - (exp(ig.)()), the cumulants are defined by:

((1-I X_)) = [[Ik (-i 0----_ m' (I)(_] , (40)k k 0ski

where the cumulant generating function is (I)(_ _= ln(¢(s-')). Higher order cumulants contain

information of decreasing significance [10].
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